Weak but Critical Links between Primary Somatosensory Centers and Motor Cortex during Movement

نویسندگان

  • Pengxu Wei
  • Ruixue Bao
  • Zeping Lv
  • Bin Jing
چکیده

Motor performance is improved by stimulation of the agonist muscle during movement. However, related brain mechanisms remain unknown. In this work, we perform a functional magnetic resonance imaging (fMRI) study in 21 healthy subjects under three different conditions: (1) movement of right ankle alone; (2) movement and simultaneous stimulation of the agonist muscle; or (3) movement and simultaneous stimulation of a control area. We constructed weighted brain networks for each condition by using functional connectivity. Network features were analyzed using graph theoretical approaches. We found that: (1) the second condition evokes the strongest and most widespread brain activations (5147 vs. 4419 and 2320 activated voxels); and (2) this condition also induces a unique network layout and changes hubs and the modular structure of the brain motor network by activating the most "silent" links between primary somatosensory centers and the motor cortex, particularly weak links from the thalamus to the left primary motor cortex (M1). Significant statistical differences were found when the strength values of the right cerebellum (P < 0.001) or the left thalamus (P = 0.006) were compared among the three conditions. Over the years, studies reported a small number of projections from the thalamus to the motor cortex. This is the first work to present functions of these pathways. These findings reveal mechanisms for enhancing motor function with somatosensory stimulation, and suggest that network function cannot be thoroughly understood when weak ties are disregarded.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حرکت ارادی پتانسیل های ناشی از قشر حسی پیکری را تعدیل می کند

An early component of the somatosensory evoked potential, arising from the primary sensory cortex in man is attenuated during voluntary finger movement. The median nerve at the wrist was stimulated while the subject performed fractionated finger movements with the same hand. Subcortical components of the somatosensory evoked potential were not changed but the P25 cortical component was attenuat...

متن کامل

Effects on muscle activity from microstimuli applied to somatosensory and motor cortex during voluntary movement in the monkey.

It is well known that electrical stimulation of primary somatosensory cortex (SI) evokes movements that resemble those evoked from primary motor cortex. These findings have led to the concept that SI may possess motor capabilities paralleling those of motor cortex and speculation that SI could function as a robust relay mediating motor responses from central and peripheral inputs. The purpose o...

متن کامل

Movement-Related Sensorimotor High-Gamma Activity Mainly Represents Somatosensory Feedback

Somatosensation plays pivotal roles in the everyday motor control of humans. During active movement, there exists a prominent high-gamma (HG >50 Hz) power increase in the primary somatosensory cortex (S1), and this provides an important feature in relation to the decoding of movement in a brain-machine interface (BMI). However, one concern of BMI researchers is the inflation of the decoding per...

متن کامل

Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation.

Emerging evidence indicates impairments in somatosensory function may be a major contributor to motor dysfunction associated with neurologic injury or disorders. However, the neuroanatomical substrates underlying the connection between aberrant sensory input and ineffective motor output are still under investigation. The primary somatosensory cortex (S1) plays a critical role in processing affe...

متن کامل

The motor but not sensory representation in motor cortex depends on postsynaptic activity during development and in maturity

Running title: Motor and sensory maps in M1 Abstract The movement representation in the primary motor cortex (M1) of the cat develops between postnatal weeks 7-12. The somatosensory representation in motor cortex is present by the age that the motor map begins to develop. In this study we examined the role of neural activity in development and maintenance of the M1 movement and somatosensory re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2018